CHAPTER 2: BONDING AND PROPERTIES

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Atomic Structure (Freshman Chem.)

- atom electrons 9.11 x 10⁻³¹ kg
 protons are protons are protons are protons are protons are protons.
- atomic number = # of protons in nucleus of atom
 = # of electrons of neutral species
- A [=] atomic mass unit = amu = 1/12 mass of ¹²C

Atomic wt = wt of 6.023×10^{23} molecules or atoms

1 amu/atom = 1g/mol

C 12.011

H 1.008 etc.

Atomic Structure

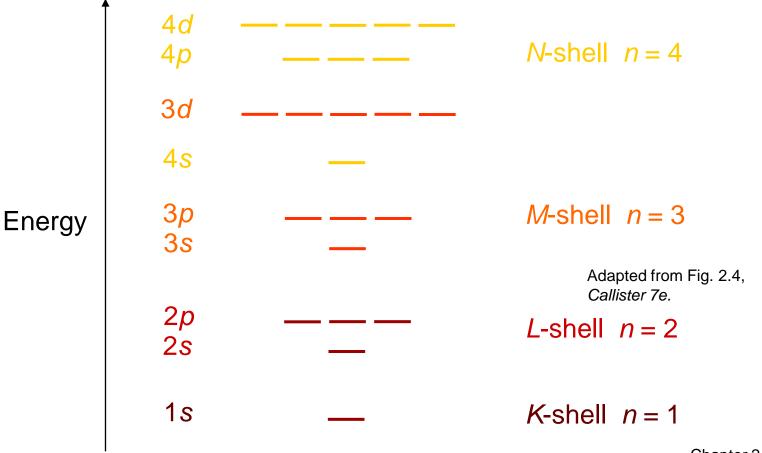
- Valence electrons determine all of the following properties
 - 1) Chemical
 - 2) Electrical
 - 3) Thermal
 - 4) Optical

Electronic Structure

- Electrons have wavelike and particulate properties.
 - This means that electrons are in orbitals defined by a probability.
 - Each orbital at discrete energy level determined by quantum numbers.

Quantum

```
n = \text{principal (energy level-shell)}
e = \text{subsidiary (orbitals)}
m_l = \text{magnetic}
m_s = \text{spin}
```


Designation

K, L, M, N, O (1, 2, 3, etc.)
s, p, d, f (0, 1, 2, 3,..., n-1)
1, 3, 5, 7 (-
$$\ell$$
 to + ℓ)
 $\frac{1}{2}$, $-\frac{1}{2}$

Electron Energy States

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

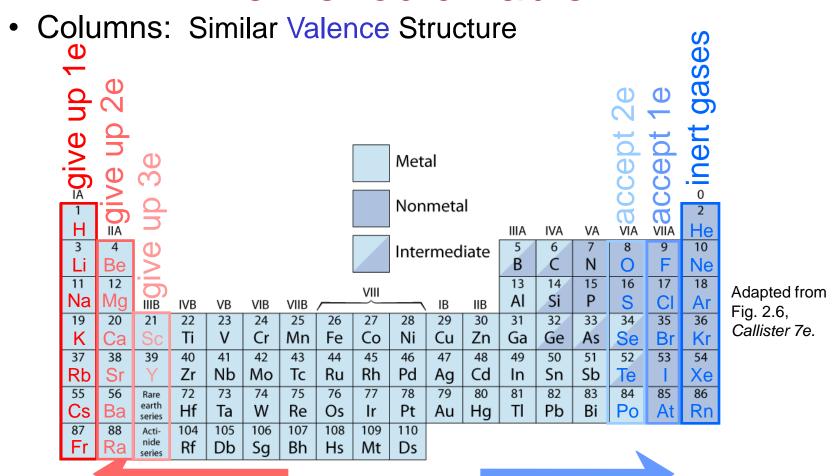
SURVEY OF ELEMENTS

Most elements: Electron configuration not stable.

<u>Element</u>	Atomic #	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	$1s^22s^22p^2$	Callister 7e.
Neon	10	$1s^22s^22p^6$ (stable	e)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	$1s^22s^22p^63s^23p^1$	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	(stable)
***	•••		
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s	s ² 4p ⁶ (stable)

Why? Valence (outer) shell usually not filled completely.

Electron Configurations

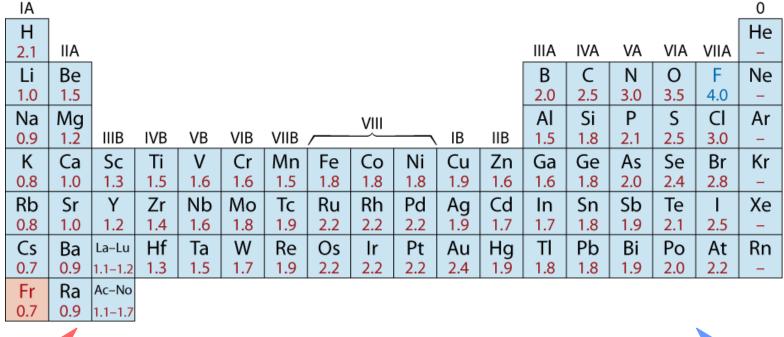

- Valence electrons those in unfilled shells
- Filled shells more stable
- Valence electrons are most available for bonding and tend to control the chemical properties
 - example: C (atomic number = 6)

$$1s^2$$
 $2s^2 2p^2$ valence electrons

Electronic Configurations

ex: Fe - atomic # = $26 \cdot 1s^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^6$ $3d^6 4s^2$ valence N-shell n = 4electrons 3*d* 3*p M*-shell n=3Energy Adapted from Fig. 2.4, Callister 7e. **2***p* L-shell n=2K-shell n=1

The Periodic Table


Electropositive elements: Readily give up electrons to become + ions.

Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Smaller electronegativity

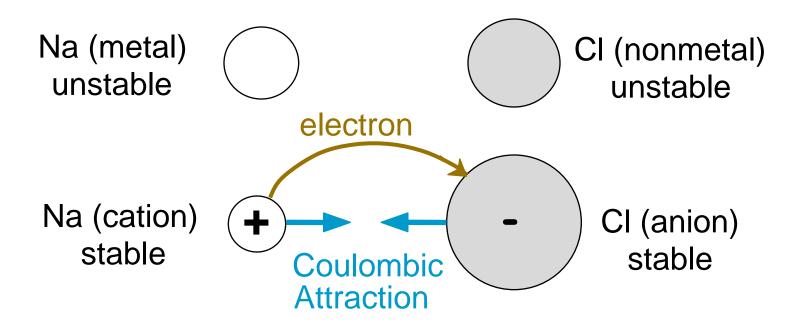
Larger electronegativity

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ionic bond – metal + nonmetal † † † donates accepts electrons electrons

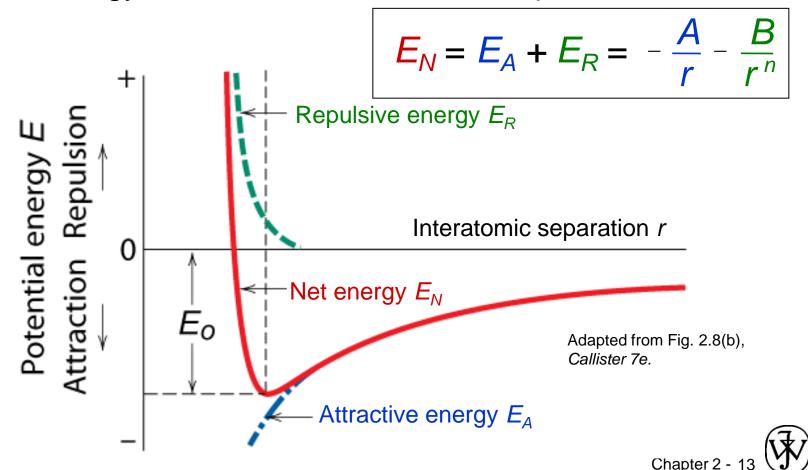
Dissimilar electronegativities

ex: MgO Mg
$$1s^2 2s^2 2p^6 3s^2$$
 [Ne] $3s^2$

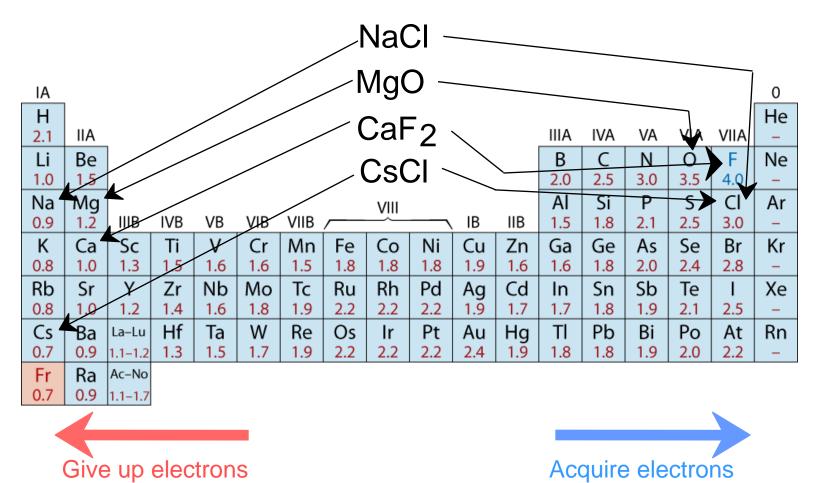

$$0 1s^2 2s^2 2p^4$$

$$Mg^{2+}$$
 1s² 2s² 2p⁶ [Ne]

$$O^{2-}$$
 1s² 2s² 2p⁶ [Ne]


Ionic Bonding

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl


Ionic Bonding

- Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Examples: Ionic Bonding

Predominant bonding in Ceramics

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Covalent Bonding

- similar electronegativity : share electrons
- bonds determined by valence s & p orbitals dominate bonding
- Example: CH₄

C: has 4 valence e⁻, needs 4 more

H: has 1 valence e⁻, needs 1 more

Electronegativities are comparable.

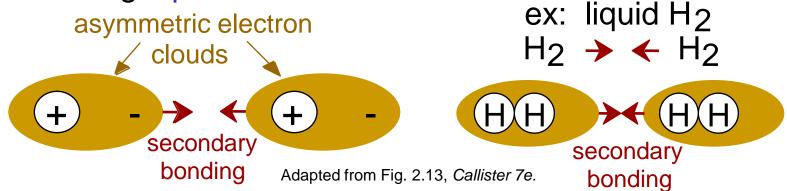
Adapted from Fig. 2.10, Callister 7e.

Primary Bonding

- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding

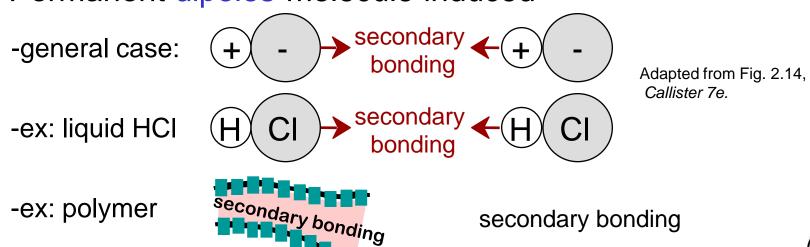
% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}} \right) x (100\%)$$

where $X_A \& X_B$ are Pauling electronegativities


Ex: MgO
$$X_{Mg} = 1.3$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5 - 1.3)^2}{4}}\right) \times (100\%) = 70.2\%$$
 ionic


SECONDARY BONDING

Arises from interaction between dipoles

Fluctuating dipoles

Permanent dipoles-molecule induced

Summary: Bonding

Type Bond Energy

Comments

Ionic Large!

Nondirectional (ceramics)

Covalent Variable

large-Diamond

small-Bismuth

Directional

(semiconductors, ceramics

polymer chains)

Metallic Variable

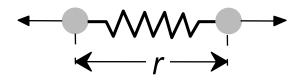
large-Tungsten

small-Mercury

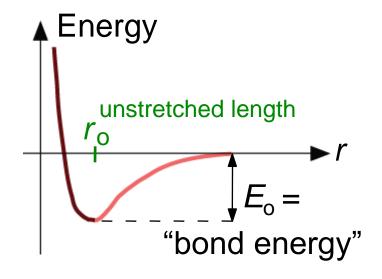
Nondirectional (metals)

Secondary smallest

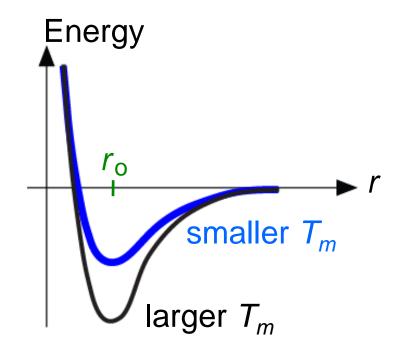
Directional


inter-chain (polymer)

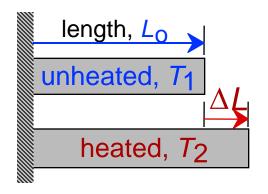
inter-molecular


Chapter 2 - 18

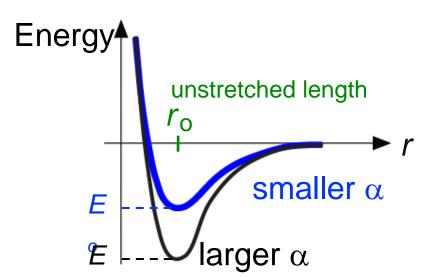
Properties From Bonding: T_m


• Bond length, *r*

Bond energy, E_o


• Melting Temperature, T_m

 T_m is larger if E_0 is larger.


Properties From Bonding : α

Coefficient of thermal expansion, α

coeff. thermal expansion $\frac{\Delta L}{L_0} = \alpha \left(T_2 - T_1 \right)$

• α ~ symmetry at r_0

 α is larger if E_0 is smaller.

Summary: Primary Bonds

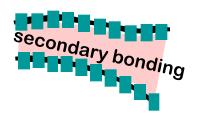
Ceramics

(Ionic & covalent bonding):

Large bond energy

large T_m large E small α

Metals


(Metallic bonding):

Variable bond energy

moderate T_m moderate Emoderate α

Polymers

(Covalent & Secondary):

Directional Properties

Secondary bonding dominates

small T_m small E large α

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: