Chapter 7: Dislocations & Strengthening Mechanisms

ISSUES TO ADDRESS...

- Why are dislocations observed primarily in metals and alloys?
- How are strength and dislocation motion related?
- How do we increase strength?
- How can heating change strength and other properties?

Chapter 7

Dislocations & Materials Classes

- Metals: Disl. motion easier.
 -non-directional bonding
 -close-packed directions for slip.
- Covalent Ceramics

 (Si, diamond): Motion hard.
 directional (angular) bonding
- Ionic Ceramics (NaCI): Motion hard.
 -need to avoid ++ and - neighbors.

Chapter 7 -

Dislocation Motion

Dislocations & plastic deformation

• Cubic & hexagonal metals - plastic deformation by plastic shear or slip where one plane of atoms slides over adjacent plane by defect motion (dislocations).

Callister 7e.

Chapter 7 -

If dislocations don't move, deformation doesn't occur!

Dislocation Motion

- Dislocation moves along slip plane in slip direction
 perpendicular to dislocation line
- Slip direction same direction as Burgers vector

Deformation Mechanisms

Slip System

- Slip plane - plane allowing easiest slippage

- Wide interplanar spacings highest planar densities
- Slip direction direction of movement Highest linear densities

 FCC Slip occurs on {111} planes (close-packed) in <110> directions (close-packed)

=> total of 12 slip systems in FCC

- in BCC & HCP other slip systems occur

Chapter 7 -

Stress and Dislocation Motion

- Crystals slip due to a resolved shear stress, τ_R .
- Applied tension can produce such a stress.

$$\tau_R = \sigma \cos \lambda \cos \phi$$

Critical Resolved Shear Stress

Single Crystal Slip

Adapted from Fig. 7.8, Callister 7e.

Ex: Deformation of single crystal

So the applied stress of 6500 psi will not cause the crystal to yield.

Ex: Deformation of single crystal

What stress *is* necessary (i.e., what is the yield stress, σ_v)?

$$\tau_{crss} = 3000 psi = \sigma_y cos \lambda cos \phi = \sigma_y (0.41)$$

So for deformation to occur the applied stress must be greater than or equal to the yield stress

$$\sigma \ge \sigma_y = 7325$$
psi

Slip Motion in Polycrystals

- Stronger grain boundaries pin deformations
- Slip planes & directions (λ, ϕ) change from one crystal to another.
- τ_R will vary from one crystal to another.
- The crystal with the largest τ_R yields first.
- Other (less favorably oriented) crystals yield later.

Adapted from Fig. 7.10, Callister 7e. (Fig. 7.10 is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Anisotropy in σ_y

- Can be induced by rolling a polycrystalline metal
 - before rolling

- after rolling

Adapted from Fig. 7.11, *Callister 7e.* (Fig. 7.11 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. I, *Structure*, p. 140, John Wiley and Sons, New York, 1964.)

rolling direction

- anisotropic

since rolling affects grain orientation and shape.

since grains are approx. spherical & randomly oriented.

Anisotropy in Deformation

1. Cylinder of Tantalum machined from a rolled plate:

2. Fire cylinder at a target.

3. Deformed cylinder

Photos courtesy of G.T. Gray III, Los Alamos National Labs. Used with permission.

plate thickness direction

• The noncircular end view shows anisotropic deformation of rolled material.

4 Strategies for Strengthening: 1: Reduce Grain Size

- Grain boundaries are barriers to slip.
- Barrier "strength" increases with Increasing angle of misorientation.
- Smaller grain size: more barriers to slip.

Adapted from Fig. 7.14, *Callister 7e.* (Fig. 7.14 is from *A Textbook of Materials Technology*, by Van Vlack, Pearson Education, Inc., Upper Saddle River, NJ.)

• Hall-Petch Equation:

$$\sigma_{yield} = \sigma_o + k_y d^{-1/2}$$

4 Strategies for Strengthening: 2: Solid Solutions

- Impurity atoms distort the lattice & generate stress.
- Stress can produce a barrier to dislocation motion.
- Smaller substitutional impurity

Impurity generates local stress at **A** and **B** that opposes dislocation motion to the right.

 Larger substitutional impurity

Impurity generates local stress at **C** and **D** that opposes dislocation motion to the right.

Stress Concentration at Dislocations

Strengthening by Alloying

- small impurities tend to concentrate at dislocations
- reduce mobility of dislocation ∴ increase strength

Adapted from Fig. 7.17, *Callister 7e.*

Strengthening by alloying

 large impurities concentrate at dislocations on low density side

Adapted from Fig. 7.18, *Callister 7e.*

(b)

Ex: Solid Solution Strengthening in Copper

• Tensile strength & yield strength increase with wt% Ni.

• Empirical relation:

$$\sigma_y \sim C^{1/2}$$

• Alloying increases σ_y and TS.

4 Strategies for Strengthening: 3: Precipitation Strengthening

Hard precipitates are difficult to shear.
 Ex: Ceramics in metals (SiC in Iron or Aluminum).

Application: Precipitation Strengthening

• Internal wing structure on Boeing 767

Adapted from chapteropening photograph, Chapter 11, *Callister 5e.* (courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.)

 Aluminum is strengthened with precipitates formed by alloying.

Adapted from Fig. 11.26, *Callister 7e.* (Fig. 11.26 is courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.)

4 Strategies for Strengthening: 4: Cold Work (%CW)

- Room temperature deformation.
- Common forming operations change the cross sectional area:

Dislocations During Cold Work

• Ti alloy after cold working:

- Dislocations entangle with one another during cold work.
- Dislocation motion becomes more difficult.

Adapted from Fig. 4.6, *Callister 7e.* (Fig. 4.6 is courtesy of M.R. Plichta, Michigan Technological University.)

Result of Cold Work

Dislocation density = $\frac{\text{total dislocation length}}{\text{unit volume}}$

- Carefully grown single crystal
 - \rightarrow ca. 10³ mm⁻²
- Deforming sample increases density
 - $\rightarrow 10^9 \text{--} 10^{10} \,\text{mm}^{-2}$
- Heat treatment reduces density
 - → 10⁵-10⁶ mm⁻²
- Yield stress increases as ρ_d increases:

Effects of Stress at Dislocations

Chapter 7 - 25

Impact of Cold Work

As cold work is increased

- Yield strength (σ_v) increases.
- Tensile strength (TS) increases.
- Ductility (%*EL* or %*AR*) decreases.

Cold Work Analysis

Adapted from Fig. 7.19, *Callister 7e.* (Fig. 7.19 is adapted from *Metals Handbook: Properties and Selection: Iron and Steels*, Vol. 1, 9th ed., B. Bardes (Ed.), American Society for Metals, 1978, p. 226; and *Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals*, Vol. 2, 9th ed., H. Baker (Managing Ed.), American Society for Metals, 1979, p. 276 and 327.) Chapter 7 -

σ - ϵ Behavior vs. Temperature

 Results for polycrystalline iron:

- σ_y and TS decrease with increasing test temperature.
- %EL increases with increasing test temperature.
- Why? Vacancies help dislocations move past obstacles.

Chapter 7 - 28

Effect of Heating After %CW

- 1 hour treatment at *T_{anneal}*... decreases *TS* and increases %*EL*.
- Effects of cold work are reversed!

 3 Annealing stages to discuss...

Adapted from Fig. 7.22, *Callister 7e.* (Fig. 7.22 is adapted from G. Sachs and K.R. van Horn, *Practical Metallurgy, Applied Metallurgy, and the Industrial Processing of Ferrous and Nonferrous Metals and Alloys*, American Society for Metals, 1940, p. 139.)

Annihilation reduces dislocation density.

Recrystallization

- New grains are formed that:
 - -- have a small dislocation density
 - -- are small
 - -- consume cold-worked grains.

Adapted from Fig. 7.21 (a),(b), *Callister 7e.* (Fig. 7.21 (a),(b) are courtesy of J.E. Burke, General Electric Company.)

Chapter 7 -

Further Recrystallization

• All cold-worked grains are consumed.

Adapted from Fig. 7.21 (c),(d), *Callister 7e.* (Fig. 7.21 (c),(d) are courtesy of J.E. Burke, General Electric Company.)

Grain Growth

Chapter 7 -

- At longer times, larger grains consume smaller ones.
- Why? Grain boundary area (and therefore energy) is reduced.

Recrystallization Temperature, *T_R*

- T_R = recrystallization temperature = point of highest rate of property change
 - 1. $T_m \implies T_R \approx 0.3-0.6 \ T_m$ (K)
 - 2. Due to diffusion \rightarrow annealing time \rightarrow $T_R = f(t)$ shorter annealing time => higher T_R
 - 3. Higher %*CW* => lower T_R strain hardening
 - 4. Pure metals lower T_R due to dislocation movements
 - Easier to move in pure metals => lower T_R

Coldwork Calculations

A cylindrical rod of brass originally 0.40 in (10.2 mm) in diameter is to be cold worked by drawing. The circular cross section will be maintained during deformation. A cold-worked tensile strength in excess of 55,000 psi (380 MPa) and a ductility of at least 15 %*EL* are desired. Further more, the final diameter must be 0.30 in (7.6 mm). Explain how this may be accomplished.

Coldwork Calculations Solution

If we directly draw to the final diameter what happens?

$$%CW = \left(\frac{A_o - A_f}{A_o}\right) \times 100 = \left(1 - \frac{A_f}{A_o}\right) \times 100$$
$$= \left(1 - \frac{\pi D_f^2 / 4}{\pi D_o^2 / 4}\right) \times 100 = \left(1 - \left(\frac{0.30}{0.40}\right)^2\right) \times 100 = 43.8\%$$

Coldwork Calc Solution: Cont.

Adapted from Fig. 7.19, *Callister 7e.*

Chapter 7 -

- For % CW = 43.8%
 - $-\sigma_v = 420 \text{ MPa}$
 - *TS* = 540 MPa > 380 MPa
 - -% EL = 6 < 15
- This doesn't satisfy criteria..... what can we do?

Coldwork Calc Solution: Cont.

 \therefore our working range is limited to %*CW* = 12-27

Coldwork Calc Soln: Recrystallization

Cold draw-anneal-cold draw again

- For objective we need a cold work of $\%CW \cong 12-27$
 - We'll use %CW = 20
- Diameter after first cold draw (before 2nd cold draw)?
 - must be calculated as follows:

$$\% CW = \left(1 - \frac{D_{f2}^{2}}{D_{02}^{2}}\right) \times 100 \implies 1 - \frac{D_{f2}^{2}}{D_{02}^{2}} = \frac{\% CW}{100}$$
$$\frac{D_{f2}}{D_{02}} = \left(1 - \frac{\% CW}{100}\right)^{0.5} \implies D_{02} = \frac{D_{f2}}{\left(1 - \frac{\% CW}{100}\right)^{0.5}}$$
Intermediate diameter = $D_{f1} = D_{02} = 0.30 / \left(1 - \frac{20}{100}\right)^{0.5} = 0.335 \text{ m}$

Coldwork Calculations Solution

Summary:

1. Cold work
$$D_{01} = 0.40 \text{ in} \rightarrow D_{f1} = 0.335 \text{ m}$$

% $CW_1 = \left(1 - \left(\frac{0.335}{0.4}\right)^2\right) \times 100 = 30$

- 2. Anneal above $D_{02} = D_{f1}$
- 3. Cold work $D_{02} = 0.335$ in $\rightarrow D_{f2} = 0.30$ m

$$%CW_2 = \left(1 - \left(\frac{0.3}{0.335}\right)^2\right) x \, 100 = 20 \quad \Longrightarrow$$

Therefore, meets all requirements

$$\sigma_y = 340 \text{ MPa}$$

 $TS = 400 \text{ MPa}$
%*EL* = 24

Chapter 7 - 41

Rate of Recrystallization

$$\log R = -\log t = \log R_0 - \frac{E}{kT}$$

$$\log t = C + \frac{B}{T}$$

$$note: R = 1/t$$

$$\int_{T_R}^{50\%} finish$$

- Hot work \rightarrow above T_R
- Cold work \rightarrow below T_R
- Smaller grains
 - stronger at low temperature
 - weaker at high temperature

Summary

- Dislocations are observed primarily in metals and alloys.
- Strength is increased by making dislocation motion difficult.
- Particular ways to increase strength are to:
 -decrease grain size
 - --solid solution strengthening
 - --precipitate strengthening
 - --cold work
- Heating (annealing) can reduce dislocation density and increase grain size. This decreases the strength.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

