Chapter 12: Structures & Properties of Ceramics

ISSUES TO ADDRESS...

- Structures of ceramic materials: How do they differ from those of metals?
- Point defects:

How are they different from those in metals?

• Impurities:

How are they accommodated in the lattice and how do they affect properties?

 Mechanical Properties: What special provisions/tests are made for ceramic materials?

Ceramic Bonding

- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

IA																	0
Н					/	Ca	F ₂ :	lar	de								He
2.1	IIA					00	· 2·		90			IIIA	IVA	VA	VIA	VIIA	-
Li	Be					Sic	<u>ہ ر</u>	ma				В	K	Ν	0	F	Ne
1.0	1.5					SIC	ງ. ວ					2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Р	S	Cl	Ar
0.9	1.2	HIB	IVB	VB	VIB	VIIB	<u> </u>			IB	IIB	1.5	1.8	2.1	2.5	3.0	-
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac–No															
0.7	0.9	1.1–1.7															

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ceramic Crystal Structures

Oxide structures

- oxygen anions much larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations in the holes of the oxygen lattice

Site Selection

Which sites will cations occupy?

- 1. Size of sites
 - does the cation fit in the site
- 2. Stoichiometry
 - if all of one type of site is full the remainder have to go into other types of sites.
- 3. Bond Hybridization

Ionic Bonding & Structure

1. Size - Stable structures:

--maximize the # of nearest oppositely charged neighbors.

m, p determined by charge neutrality

Chapter 12 -

Coordination # and Ionic Radii

^rcation

ranion

- Coordination # increases with
- Issue: How many anions can you arrange around a cation?

 $rac{r}{cation}$ Coord ranion # < 0.155 2 linear 0.155 - 0.225 3 triangular 0.225 - 0.414 4 T_D

0.414 - 0.732 6 O_H

0.732 - 1.0 8 cubic Adapted from Table 12.2, *Callister 7e.*

Cation Site Size

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for O_H site (C.N. = 6)

$$2r_{anion} + 2r_{cation} = \sqrt{2}a$$
$$a = 2r_{anion}$$

$$2r_{anion} + 2r_{cation} = 2\sqrt{2}r_{anion}$$

$$r_{anion} + r_{cation} = \sqrt{2}r_{anion}$$
 $r_{cation} = (\sqrt{2} - 1)r_{anion}$
$$\frac{r_{cation}}{r_{anion}} = 0.414$$

Site Selection II

2. Stoichiometry

- If all of one type of site is full the remainder have to go into other types of sites.
- Ex: FCC unit cell has 4 O_H and 8 T_D sites.

If for a specific ceramic each unit cell has 6 cations and the cations prefer O_H sites

4 in O_H 2 in T_D

Site Selection III

- 3. Bond Hybridization significant covalent bonding
 - the hybrid orbitals can have impact if significant covalent bond character present
 - For example in SiC
 - $X_{\rm Si} = 1.8$ and $X_{\rm C} = 2.5$

% ionic character = 100 {1 - exp[-0.25($X_{si} - X_c$)²]} = 11.5%

- ca. 89% covalent bonding
- both Si and C prefer *sp*³ hybridization
- Therefore in SiC get T_D sites

Example: Predicting Structure of FeO

Data from Table 12.3.

Callister 7e.

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nm)
AI ³⁺	0.053	
Fe ²⁺	0.077	
Fe ³⁺	0.069	
Ca ²⁺	0.100	

Answer:

<i>r</i> _{cation}	_ 0.077				
r _{anion}	0.140				
	= 0.550				

based on this ratio, --coord # = 6 --structure = NaCl

O ²⁻	0.140
CI-	0.181
F ⁻	0.133

Anion

Chapter 12 - 10

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCI (rock salt) structure

• Na⁺ $r_{Na} = 0.102 \text{ nm}$ • Cl⁻ $r_{Cl} = 0.181 \text{ nm}$

 $r_{\rm Na}/r_{\rm Cl} = 0.564$

 \therefore cations prefer O_H sites

MgO and FeO

MgO and FeO also have the NaCl structure

So each oxygen has 6 neighboring Mg²⁺

AX Crystal Structures

AX–Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

Adapted from Fig. 12.3, *Callister 7e.*

AX Crystal Structures

Zinc Blende structure

Adapted from Fig. 12.4, *Callister 7e.*

Ex: ZnO, ZnS, SiC

 $\frac{r_{Zn^{2+}}}{r_{O^{2-}}} = \frac{0.074}{0.140} = 0.529 \implies O_H??$

- Size arguments predict Zn^{2+} in O_H sites,
- In observed structure Zn^{2+} in T_D sites
- Why is Zn^{2+} in T_D sites?
 - bonding hybridization of zinc favors T_D sites

So each Zn²⁺ has 4 neighboring O²⁻

AX₂ Crystal Structures

Fluorite structure

Adapted from Fig. 12.5, *Callister 7e.*

- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- antifluorite structure cations and anions reversed

ABX₃ Crystal Structures

Mechanical Properties

We know that ceramics are more brittle than metals. Why?

- Consider method of deformation
 - slippage along slip planes
 - in ionic solids this slippage is very difficult
 - too much energy needed to move one anion past another anion

Ceramic Density Computation

Number of formula units/unit cell

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous Silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

Adapted from F 12.11, Callister O2− Si⁴⁺ OH⁻

Silica Glass

- Dense form of amorphous silica
 - Charge imbalance corrected with "counter cations" such as Na⁺
 - Borosilicate glass is the pyrex glass used in labs
 - better temperature stability & less brittle than sodium glass

Silicates

Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces

 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered Silicates

Layered Silicates

 Kaolinite clay alternates (Si₂O₅)²⁻ layer with Al₂(OH)₄²⁺ layer

Note: these sheets loosely bound by van der Waal's forces Chapter 12 - 24

Layered Silicates

- Can change the counterions
 - this changes layer spacing
 - the layers also allow absorption of water
- Micas KAl₃Si₃O₁₀(OH)₂
- Bentonite
 - used to seal wells
 - packaged dry
 - swells 2-3 fold in H_2O
 - pump in to seal up well so no polluted ground water seeps in to contaminate the water supply.

Carbon Forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

Adapted from Fig. 12.15, *Callister 7e.*

Carbon Forms - Graphite

• layer structure – aromatic layers

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphite sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C_{60} also C_{70} + others

Defects in Ceramic Structures

- Frenkel Defect
 - --a cation is out of place.
- Shottky Defect

--a paired set of cation and anion vacancies.

Adapted from Fig. 12.21, Callister 7e. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.)

• Equilibrium concentration of defects

Impurities

- Impurities must also satisfy charge balance = Electroneutrality
- Ex: NaCl Na⁺ Cl⁻
- Substitutional cation impurity
 Ca²⁺

initial geometry

Ca²⁺ impurity

≫Na+

Na⁺

Substitutional anion impurity

resulting geometry

Ceramic Phase Diagrams

MgO-Al₂O₃ diagram:

Chapter 12 - 31

Measuring Elastic Modulus

- Room *T* behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used. --tensile tests are difficult for brittle materials.

• Determine elastic modulus according to:

Measuring Strength

• 3-point bend test to measure room T strength.

Measuring Elevated T Response

• Elevated Temperature Tensile Test ($T > 0.4 T_m$).

Summary

- Ceramic materials have covalent & ionic bonding.
- Structures are based on:
 - -- charge neutrality
 - -- maximizing # of nearest oppositely charged neighbors.
- Structures may be predicted based on:
 - -- ratio of the cation and anion radii.
- Defects
 - -- must preserve charge neutrality
 - -- have a concentration that varies exponentially w/T.
- Room *T* mechanical response is elastic, but fracture is brittle, with negligible deformation.
- Elevated *T* creep properties are generally superior to those of metals (and polymers).

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

