CHAPTER 14: POLYMER STRUCTURES

ISSUES TO ADDRESS...

- What are the basic microstructural features?
- How are polymer properties effected by molecular weight?
- How do polymeric crystals accommodate the polymer chain?

Chapter 14 - Polymers

What is a polymer?

Adapted from Fig. 14.2, Callister $7 e$.

Ancient Polymer History

- Originally natural polymers were used
- Wood - Rubber
- Cotton
- Leather
- Wool
- Silk
- Oldest known uses
- Rubber balls used by Incas
- Noah used pitch (a natural polymer) for the ark

Polymer Composition

Most polymers are hydrocarbons

- i.e. made up of H and C
- Saturated hydrocarbons
- Each carbon bonded to four other atoms

$$
\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}
$$

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: $\mathbf{C}_{n} \mathrm{H}_{2 n+2}$

Unsaturated Hydrocarbons

- Double \& triple bonds relatively reactive - can form new bonds
- Double bond - ethylene or ethene - $\mathrm{C}_{n} \mathrm{H}_{2 n}$

- 4-bonds, but only 3 atoms bound to C's
- Triple bond - acetylene or ethyne - $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

Isomerism

- Isomerism
- two compounds with same chemical formula can have quite different structures

Ex: $\mathrm{C}_{8} \mathrm{H}_{18}$

- n-octane

- 2-methyl-4-ethyl pentane (isooctane)

Chemistry of Polymers

- Free radical polymerization

initiation
free radical $\begin{aligned} & \text { monomer } \\ & \text { (ethylene) }\end{aligned}$

propagation
- Initiator: example - benzoyl peroxide

Chemistry of Polymers

Adapted from Fig.
14.1, Callister 7e.

OC $\circ \mathrm{H}$

Note: polyethylene is just a long HC

- paraffin is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials
Polymer \quad Repeat Unit

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer \quad Repeat Unit

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

MOLECULAR WEIGHT

- Molecular weight, M_{i} : Mass of a mole of chains.

Lower M

higher M

$\bar{M}_{n}=\frac{\text { total wt of polymer }}{\text { total \# of molecules }}$

$\bar{M}_{n}=\Sigma x_{i} M_{i}$
$\bar{M}_{w}=\Sigma w_{i} M_{i}$
\bar{M}_{w} is more sensitive to higher molecular weights

Molecular Weight Calculation

Example: average mass of a class

N_{i}	Mi	x_{i}	w_{i}	$\begin{aligned} & \bar{M}_{n}=\sum x_{i} M_{i} \\ & \bar{M}_{w}=\sum w_{i} M_{i} \end{aligned}$
\# of students	mass (b)			
1	100	0.1	0.054	
1	120	0.1	0.065	
2	140	0.2	0.151	
3	180	0.3	0.290	
2	220	0.2	0.237	
1	380	0.1	0.204	
		\bar{M}_{n}	\bar{M}_{w}	
		186 lb	216 lb	

Degree of Polymerization, n

$n=$ number of repeat units per chain

$$
n_{i}=6
$$

$n_{n}=\sum x_{i} n_{i}=\frac{\bar{M}_{n}}{\bar{m}} \quad n_{w}=\sum w_{i} n_{i}=\frac{\bar{M}_{w}}{\bar{m}}$
where $\bar{m}=$ averagemolecular weight of repeatunit
Chain fraction $\bar{m}=\Sigma f_{i} m_{\text {mol. wt of repeat unit } i}$

End to End Distance, r

Adapted from Fig.
14.6, Callister 7e.

Molecular Structures

- Covalent chain configurations and strength:

Adapted from Fig. 14.7, Callister 7 e.

Polymers - Molecular Shape

Conformation - Molecular orientation can be changed by rotation around the bonds

- note: no bond breaking needed

Polymers - Molecular Shape

Configurations - to change must break bonds

- Stereoisomerism

Tacticity

Tacticity - stereoregularity of chain
isotactic - all R groups on same side of chain
syndiotactic - R groups alternate sides

cis/trans Isomerism

cis
cis-isoprene
(natural rubber)
bulky groups on same side of chain

trans
trans-isoprene (gutta percha)
bulky groups on opposite sides of chain

Copolymers

two or more monomers polymerized together

- random - A and B randomly vary in chain
- alternating - A and B alternate in polymer chain
- block - large blocks of A alternate with large blocks of B

alternating

- graft - chains of B grafted on to A backbone

$$
A-\bullet \quad B-\bullet
$$

Polymer Crystallinity

Adapted from Fig. 14.10, Callister 7 .

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
- Chain folded structure

Polymer Crystallinity

Polymers rarely 100\% crystalline

- Too difficult to get all those chains aligned

crystalline

 region- \% Crystallinity: \% of material that is crystalline.
-- TS and E often increase with \% crystallinity.
-- Annealing causes crystalline regions to grow. \% crystallinity increases.
 region

Adapted from Fig. 14.11, Callister 6e.
(Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1965.)

Polymer Crystal Forms

- Single crystals - only if slow careful growth

Adapted from Fig. 14.11, Callister 7e.

Polymer Crystal Forms

Spherulites - crossed polarizers

Maltese cross

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

