CHAPTER 14: POLYMER STRUCTURES

ISSUES TO ADDRESS...

- What are the basic microstructural features?
- How are polymer properties effected by molecular weight?
- How do polymeric crystals accommodate the polymer chain?

Chapter 14 – Polymers

What is a polymer?

Ancient Polymer History

- Originally natural polymers were used
 - Wood Rubber
 - Cotton Wool
 - Leather Silk
- Oldest known uses
 - Rubber balls used by Incas
 - Noah used pitch (a natural polymer) for the ark

Polymer Composition

Most polymers are hydrocarbons – i.e. made up of H and C

Saturated hydrocarbons

- Each carbon bonded to four other atoms

 $C_n H_{2n+2}$

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C)
Methane	CH_4	$\mathbf{H} - \mathbf{H}$ $\mathbf{H} - \mathbf{H}$ \mathbf{H}	-164
Ethane	C_2H_6	$\begin{array}{ccc} H & H \\ I & I \\ H - C - C - H \\ I & I \\ H & H \end{array}$	-88.6
Propane	C_3H_8	$\begin{array}{ccccccc} H & H & H \\ & & \\ H - C - C - C - H \\ & \\ H & H \end{array}$	-42.1
Butane	C_4H_{10}		-0.5
Pentane	$C_{5}H_{12}$		36.1
Hexane	$C_{6}H_{14}$		69.0
			Chapter 14 - !

Unsaturated Hydrocarbons

- Double & triple bonds relatively reactive can form new bonds
 - Double bond ethylene or ethene C_nH_{2n}

4-bonds, but only 3 atoms bound to C's

- Triple bond - acetylene or ethyne - C_nH_{2n-2}

$$H-C\equiv C-H$$

Isomerism

• Isomerism

 two compounds with same chemical formula can have quite different structures

Ex: C₈H₁₈

• n-octane

 $H_3C + CH_2 + CH_3$

• 2-methyl-4-ethyl pentane (isooctane)

 CH_3 H₃C-CH-CH₂-CH-CH₃ CH₂ CH₂ CH₃

Chemistry of Polymers

Free radical polymerization

• Initiator: example - benzoyl peroxide

Chemistry of Polymers

Adapted from Fig. 14.1, *Callister 7e.*

Note: polyethylene is just a long HC - paraffin is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit	
	Poly(hexamethylene adipamide) (nylon 6,6)	$-\mathbf{N} - \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{6} - \mathbf{N} - \mathbf{C} - \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix} \end{bmatrix}$	
	Poly(ethylene terephthalate) (PET, a polyester)	$-\overset{\mathbf{O}}{\overset{b}{\overset{\mathbf{O}}{\overset{\mathcal{O}$	
	Polycarbonate (PC)	$-0 - \bigcirc \\ -C \\ -$	

MOLECULAR WEIGHT

Molecular Weight Calculation

Example: average mass of a class

N i	M _i	X _i	W _i
# of students	mass (lb)		
1	100	0.1	0.054
1	120	0.1	0.065
2	140	0.2	0.151
3	180	0.3	0.290
2	220	0.2	0.237
1	380	0.1	0.204
		\overline{M}_n	\overline{M}_{w}
		186 lb	216 lb

 $M_n = \sum \mathbf{X}_i M_i$

 $\overline{M}_{w} = \sum W_{i}M_{i}$

Degree of Polymerization, n

n = number of repeat units per chain

$$n_{n} = \sum_{i=1}^{H} x_{i} n_{i} = \frac{\overline{M}_{n}}{\overline{m}} \qquad n_{w} = \sum_{i=1}^{H} w_{i} n_{i} = \frac{\overline{M}_{w}}{\overline{m}}$$

where m = average molecular weight of repeatunit

$$m = \Sigma f_j m_j$$
Chain fraction $-$ mol. wt of repeat unit i

End to End Distance, r

Molecular Structures

• Covalent chain configurations and strength:

Direction of increasing strength

Adapted from Fig. 14.7, Callister 7e.

Polymers – Molecular Shape

Conformation – Molecular orientation can be changed by rotation around the bonds

- note: no bond breaking needed

Polymers – Molecular Shape

Configurations – to change must break bonds

Stereoisomerism

Tacticity

Tacticity – stereoregularity of chain

cis/trans Isomerism

cis

cis-isoprene (natural rubber)

bulky groups on same side of chain

trans

trans-isoprene (gutta percha)

bulky groups on opposite sides of chain

Copolymers

- two or more monomers polymerized together
- random A and B randomly vary in chain
- alternating A and B alternate in polymer chain
- block large blocks of A alternate with large blocks of B
- graft chains of B grafted on to A backbone

Polymer Crystallinity

Adapted from Fig. 14.10, *Callister 7e.*

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
 - Chain folded structure

Adapted from Fig.

14.12, Callister 7e.

Polymer Crystallinity

and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Polymer Crystal Forms

• Single crystals – only if slow careful growth

Adapted from Fig. 14.11, Callister 7e.

Polymer Crystal Forms

growth - forms lamellar (layered) structures

Spherulites – crossed polarizers

Maltese cross

Adapted from Fig. 14.14, Callister 7e.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

