Engineering Economic Analysis

- Engineering Economy deals with the concepts and techniques for evaluating the worth of systems, products, and services in relation to their costs.

Engineering Economic Analysis

- It is used to answer many different questions
- Which engineering projects are worthwhile?
- Has the design engineer shown that the solar tracker project he designed is worth developing?
- Which engineering projects should have a higher priority?
- Has the construction engineer shown which road improvement projects should be funded with the available dollars?
- How should the engineering project be designed?
- Has the electronics engineer chosen the best material for fiber optic insulation?

Outline

- Time Value of Money
- Interest
- Cash Flow Diagrams
- Evaluating Economic Alternatives
- Present Worth Analysis
- Annual Equivalent Worth
- Breakeven Analysis

Elements of a Transaction

- $P=$ Principal (Amount of money invested)
- P can also be the Present Worth of an investment
- i = Interest rate (The cost of money)
- N= Duration of the transaction
- A= Amount in a regular series of payments
- A can also be an annual cost or revenue
- F= Future amount

Time Value of Money

- Money has value
- Money can be leased or rented
- The payment is called interest

- If you put $\mathbf{\$ 1 , 0 0 0}$ in a bank at $\mathbf{1 0 \%}$ interest for one time period you will receive back your original $\mathbf{\$ 1 , 0 0 0}$ plus $\mathbf{\$ 1 0 0}$

Original amount to be returned $=\$ 1000$ Interest gained $=\$ 1,000 \times .1=\$ 100$

For simplicity, interest will be considered inflation-adjusted

Compound Interest

- Interest that is computed on the principal (original unpaid debt) and the unpaid interest
- Compound interest is most commonly used in practice
- Total interest earned $=I_{N}=P(1+i)^{N}-P$
- Where,
- P - present sum of money
- i - interest rate
- N - number of periods (years)

Cash Flow

- Engineering projects generally have economic consequences that occur over an extended period of time
- For example, if an expensive piece of machinery is installed in a plant were bought on credit, the simple process of paying for it may take several years
- Each project is described as cash receipts or disbursements (expenses) at different points in time.

Categories of Cash Flows

- The expenses and receipts due to engineering projects usually fall into one of the following categories:
- Initial cost [-]: expense to build or to buy and install
- Operations and Maintenance (O\&M) [-]: annual expense, such as electricity, labor, and minor repairs
- Salvage Value [+]: receipt at project termination for sale or transfer of the equipment
- Revenues [+]: annual receipts due to sale of products or services
- Overhaul [-]: major capital expenditure that occurs during the asset's life

Cash Flow Diagram (CFD)

- A CFD is created by first drawing a segmented time-based horizontal line, divided into appropriate time unit. Each time when there is a cash flow, a vertical arrow is added - pointing down for costs [-] and up for revenues or benefits [+]. The cost flows are drawn to relative scale

An example of a Cash Flow Diagram

Borrower's Perspective

Future Worth and Present Worth

11

- Future Worth (F)
- If you deposit P dollars today for N periods at i, you will have F dollars at

$$
F=P(1+i)^{N}
$$ the end of period N.

- Present Worth (P)
- F dollars at the end of period N is equal to a single sum P dollars now, if your earning power is measured in terms of interest rate i.

Evaluating Economic Alternatives

Measures of Investment Worth

Annual Equivalent Worth (AE) Analysis
Net Present Worth (NPW) Analysis
Breakeven Analysis

Annual Equivalent Analysis

Annual Equivalent Worth (AEW)

AEW = Annual Equivalent Benefits $\boldsymbol{-}$ Annual Equivalent Costs

For a project to be economically feasible, Revenues must exceed costs.

Two main kinds of costs:
Operating costs and capital costs

Choosing alternatives using Present Worth

Which of these two alternatives would you choose if the interest rate is $\mathbf{8 \%}$?

Year	Plan 1	Plan 2
0		$\$ 5,000$
1		
2		
3		
4		
5	$\$ 5,000$	$\$ 5,000$
Total	$\$ 000$	

To make a choice the cash flows must be altered so a comparison may be made.

An example of Net Present Worth Calculation

- It has been projected that a design project for a garage door remote sensor will yield a revenue of $\$ 60,000$ after 5 years. If initial costs total $\$ 15,000$, compute its net present worth at an interest rate of 10%.
- Solution:
- The Net Present Worth = Present equivalent of revenue (benefit) - Initial cost
- Find Peq; Given F=\$60,000, $\mathrm{N}=\mathbf{5}, \mathrm{I}=\mathbf{1 0 \%}$
- $\operatorname{Peq}=F(1+i)^{-N}=60,000(1.1)^{-5}=37,255$
- $N P W=37,255-15,000=\$ 22,255$

Breakeven Analysis

- Breakeven analysis is commonly used to study relationships among costs, revenue, and volume:
- Define cost and revenue functions
- Linear (or non-linear) functions of volume, price, etc.
- Objective: Find the value (volume, price, etc.) that maximizes profits

Fixed Costs (FC)

- Do not vary with production or activity levels, price, etc.
- Examples:
- Buildings
- Insurance
- Fixed overhead
- Equipment
- etc.

Variable Costs (VC)

- Vary with the level of activity
- Examples:
- Direct labor (wages)
- Materials
- Indirect costs (e.g., fringe benefits)
- Marketing
- Advertising
- Warranty
- etc.

Breakeven Analysis

- Revenue (R)
- Total Cost (TC):
- Fixed Cost (FC)
- Variable Cost (VC)

$$
T C=F C+V C
$$

- At the breakeven point:

$$
\mathrm{R}=\mathrm{TC}
$$

- Profit:
- Revenue minus total cost
Profit = R - TC

In per unit terms, the breakeven quantity of units

$$
q^{*}=\frac{F C}{r-v}
$$

r is the revenue per unit, v is the variable cost per unit

Practice Problem: Breakeven Analysis

Star Design Group invested $\mathbf{\$ 4 , 0 0 0 , 0 0 0}$ as fixed cost in a project. The variable cost was $\$ 2,000,000$ per year. If the total revenue is at a rate of $\$ 3,000,000$ per year. Calculate the breakeven point, in years.

Summary

- Engineering economic analysis should consider the time value of money
- The Present Worth method can be used to evaluate alternatives having different lives
- The Annual Equivalent method has the advantage of not requiring the use of the least common multiple.
- The breakeven point is the level of production (and sales) that results in a zero profit

