

Projects and Teamwork

- What is a project?
- Planning design projects
- Controlling projects
- Project teamwork

How do we solve a design problem?

Design problem –FUNCTION

(customer & company requirements)

Make a project plan

Execute plan

Solution - FORM (manufacturing specifications)

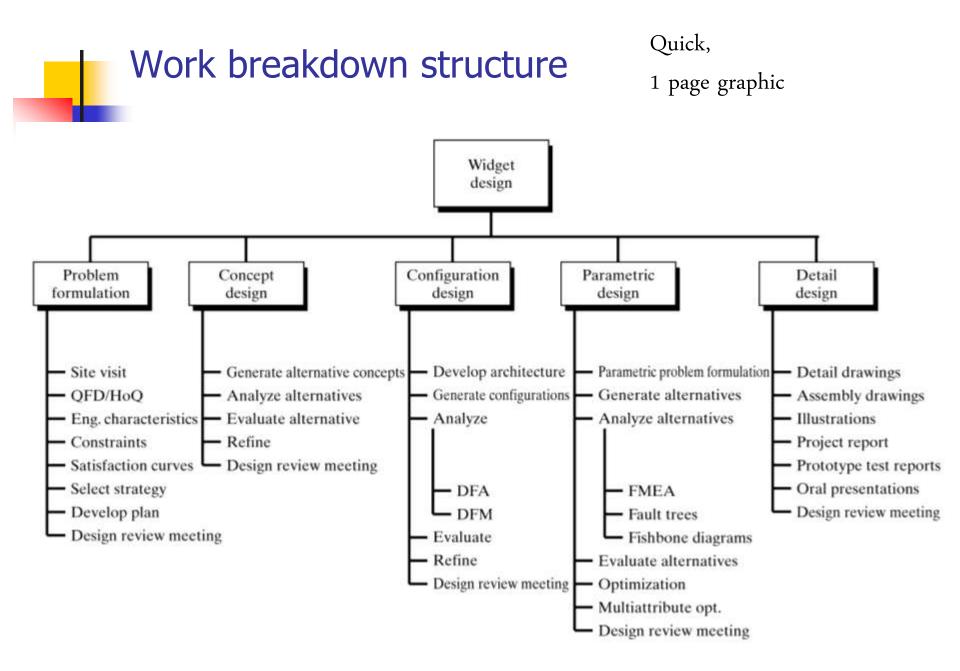
Why should we plan a project?

To answer the following questions

```
WHAT?.....scope of work tasks
WHEN?....schedule
HOW MUCH?..budget
WHO?....organization chart,
responsibilities table
```

Without a roadmap.....

how will you know where you are headed?



What is a project

Project – Unique sequence of activities (work tasks) undertaken ONCE to achieve a specific set of objectives.

cost work time scope quality

Changing the length of any leg of the project triangle affects the other legs!

2/9/2013 5

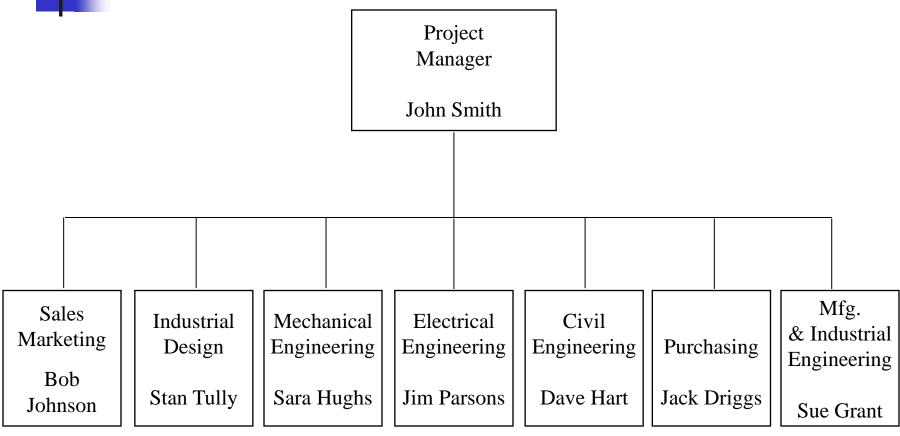
4

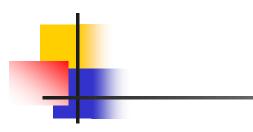
Project schedule (Gannt Chart)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	M
Task	1/22-1/26	1/27-2/2	2/3-2/9	2/10-2/16	2/17-2/23	2/24-3/2	3/3-3/9	3/
Design Problem Formulation								
1.1 Site Visit								
1.5 Benchmarking								
1.6 Contact Customers								
1.7 Determine PDP/DV/SEP								
1.10 Outline Work Scope								
1.8 Determine Schedule								
1.9 Calculate Budget								
1.4 Create EDS								
1.3 Satisfaction Curves								
1.2 Complete QFD/HOQ								
1.11Report 1								
Conceptual Design			♦					
2.1,2,5,6,9 Generate Concepts								
2.7 Determine Physical Principles								
2.8 Conceptual Drawings								
2.3,4 Evaluate Concepts								

Project Budget

TABLE 14.4 Example Project Budget Listing Major Work Tasks, Time, and Expenses Required to Complete the Project Tasks


Project Name: Snow Blower Attachment Design Date: 2/7/04


Project Budget

Task	Description	Sr. Engineers	Admin.	Hours	\$
1.0	Design Problem Formulation	91	2	93	1900
2.0	Conceptual Design	96	6	102	2160
3.0	Configuration Design	97	8	105	2260
4.0	Parametric Design	160	9	169	3560
5.0	Detail Design	202	10	212	4440
	Total Hours	646	35	681	
	Rate: \$/Hour	20	40		
	Total Labor Cost	\$ 12,920	\$ 1,400		\$ 14,320
	Materials/Supplies				\$200
			Total Costs:		\$ 14,520.00

Organization chart for a design project

Project Proposal Outline

Design Project Proposal

Cover letter

Title page

Table of contents

Introduction

Problem statement

Mission statement

Engineering design specifications (QFD)

Project objectives

Scope of work

Work breakdown structure (WBS), 2-level diagram

Work scope describing work tasks

Project deliverables associated with tasks

Schedule

Gantt chart

Critical path network diagram

Milestones

Budget

Responsibilities table

Budget

Other resource requirements

Project management

Organization chart of project stakeholders

Project budget and schedule control system

Risk assessment

Design change notice (DCN's) procedure

Appendix

Site visit data

Success = Comprehensive Project Plan

Successful project teams develop comprehensive project plans.

What defines a "team"

A *team* - is a group of people that:

- have complementary skills and knowledge
- work together toward common goals
- hold each other mutually accountable.

How does this compare to a soccer team for example....?

Teamwork Skills

Collaboration		Understands and commits to team goals
	2.	Participates actively in team activities
	3.	Respects individual viewpoints/differences
	4.	Accepts criticism
	5.	Assists other teammates
Communication	6.	Listens attentatively to others on team
	7.	Provides constructive feedback
	8.	Communicates clearly and concisely
Decision Making	9.	Makes decisions based on facts
	10.	Anticipates problems
	11.	Contributes to meetings
Self-Management	12.	Monitors self-progress
	13.	Completes individual tasks thoroughly
	14.	Completes individual tasks on time
	15.	Asks for help when needed

Stages of Team Development

project initiation wild enthusiasm disillusionment chaos search for the guilty punishment of the innocent promotion of the non-participants and definition of the project requirements (Lewis, 2002). Forming, Storming, Norming, Performing (Tuckman)

Team interaction is dynamic not static!

Team Rules

- Commit to the goals of team
- Perform assigned tasks completely, accurately, on time.
- Respect the contributions of others
- Assist other team members when needed
- Ask for help before we get into trouble
- Follow guidelines for effective meetings
- Actively participate in team deliberations
- Focus on problems not people or personalities
- Constructively resolve conflicts or differences of opinion
- Comment clearly and constructively

What is Professional Responsibility?

definition of profession

- 1. The body of people in a learned occupation.
- 2. An occupation requiring special education (especially in the liberal arts or sciences)

definition of *responsibility*

1. The social force that binds you to your obligations and the courses of action demanded by that force.

"obligated" to follow "courses of action."

ASME Code of Ethics Fundamental Cannons 1-4

- 1. Engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.
- 2. Engineers shall perform services only in areas of their competence.
- 3. Engineers shall continue their professional development throughout their careers and shall provide opportunities for the professional development of those engineers under their supervision.
- 4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.

ASME Code of Ethics **Fundamental Cannons** 5-8

- 5. Engineers shall build their professional reputation on the merit of their services and shall not compete unfairly with others.
- 6. Engineers shall associate only with reputable persons or organizations.
- 7. Engineers shall issue public statements only in an objective and truthful manner.
- 8. Engineers shall consider environmental impact in the performance of their professional duties.

Summary (Continued)

- Design Project decisions, teamwork, coordination
- Project plan scope of work, schedule, budget
- "Teamwork" requires
 communication, group decision making,
 collaboration, self-management
- Teams are dynamic... expect changes
- Hold effective meetings
- Set team rules... early in project