Formulating Design Problems

- Designing a high-performance motorcycle
- What is a "design problem?"
- What is the "solution" to a design problem?
- How do we solve a design problem?
- Steps in formulating
- Customer & company requirements
- Engineering Design Specifications
- Gaining consensus
- Quality products
- QFD/House of Quality
- Summary

- An opportunity to make and sell a new product
- Need to fix an existing product
- Make and sell a variant of an older design

Customer or company requirements-----"Function"

What info would help us understand this design problem?

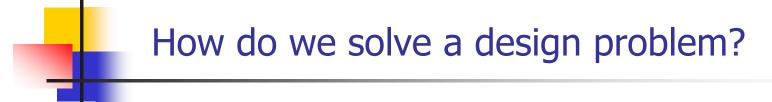
- How quickly should the cycle accelerate to 60 mph?
- What should the top speed be?
- Is fuel consumption less important than acceleration?
- What riding comforts are expected?
- Is an electric starter desired?
- Will the customer tolerate a liquid cooling system?
- Will customer care about aesthetics?

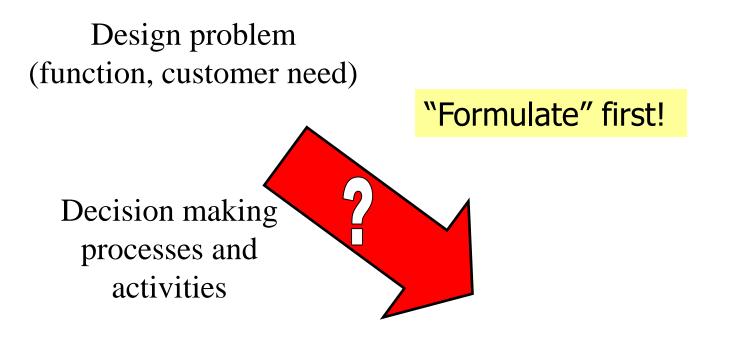
Other information?

What is the target cost of manufacture?

Which is more preferred: low-end torque or highend speed?

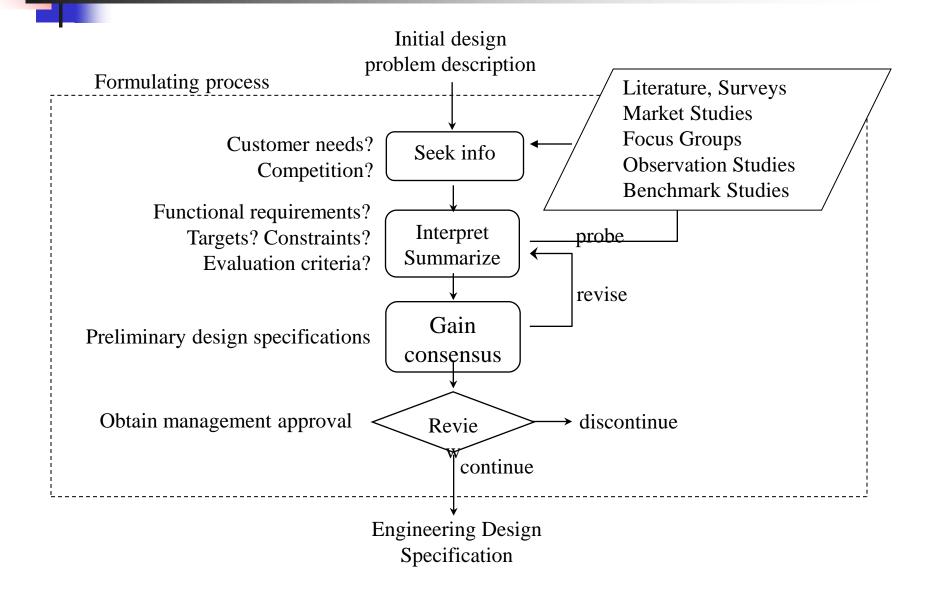
What is the anticipated production run quantity?


What types of instruments are preferred, digital and or analog?


What are the desired service intervals?

What is the solution to a design problem?

- Set of drawings
- Package of predicted performance calculations
- Test reports on prototypes
- Manufacturing specifications
- Bill of materials
- Estimates of sales revenues, costs and profit


i.e.... A "design" ready for manufacture ----- "Form"

Solution (form, manufacturable product design)

Decisions & info. flow during formulation

Steps in formulating a design problem

- 1. obtain a detailed understanding of the design problem
- 2. document our understanding in an EDS
- 3. choose a solution strategy
- 4. develop a project plan (scope of work, budget and schedule)
- 5. establish a consensus among team members & management

Initially, we search for information relating to

Customer Requirements

Company Requirements

Function / performance:

start engine quickly, support rider(s) comfortably, ... Operating road shock wet, cold, high altitude Other

maintenance intervals fuel economy

Information sources

- Surveys
- Market Studies
- Literature
- Focus Groups
- Observation Studies
- Benchmark Studies

Motorcycle design: Company requirements

Marketing:

need product in 24 months, sale price competitive Manufacturing 5,000 units per year use existing manufacturing plant Financial \$300,000 R&D budget

minimum 20% ROI 20% B/T

Must all requirements be satisfied?

Requirements can be separated into: "must haves," and "desirable."

"must have" requirements = become design constraints

"desirable" requirements = weighted by importance

Customer importance weights by sub-function

Sub-function	<u>Weight</u>
start engine quickly	15 %
<pre>support rider(s) comfortably</pre>	10 %
transport rider(s) fast	50 %
steer bike easy	20 %
absorb road shocks	<u> </u>
total	100 %

Translating customer/company requirements

How will we know when we have designed a product that satisfies the customer?

e.g. Customer says, "I want a fast motorcycle."

What does "fast" mean? 120 mph top speed? 32 ft/sec/sec acceleration? 4000 Hz engine frequency?

Engineers need <u>objective</u> ... i.e. quantitative targets.

Engineering characteristics, units, and limits

Sub-function	unction Engineering Characteristic		Limits				
start engine quickly	cranking time	seconds	$\leq 6 \text{ secs}$				
support rider(s) comfortably	cushion compression	inches					
transport rider(s) fast	acceleration top speed 0-60 mph	feet/ sec ² mph/kph seconds	$\geq 32 \text{ ft/s}^2$ $\geq 90 \text{ mph}$ $\leq 6 \text{ secs}$				
steer bike easy	steering torque turning radius	pound-ft feet					
Absorb road shocks	suspension travel	inches	> 5 in.				

...are <u>quantities</u> that measure the "performance" of a candidate design with respect to specific customer required functions.

Satisfaction values based on the amount of customer satisfaction

Amount of satisfaction	Value				
Most satisfied	1.0				
Very satisfied	0.9				
Moderately satisfied	0.8				
Somewhat satisfied	0.6				
Hardly satisfied	0.3				
Not satisfied	0.0				
qualitative	quantitative				

Step 2. Document our understanding

1. obtain a detailed understanding of the design problem,

2. document our understanding in an EDS

- 3. choose a solution strategy
- 4. develop a project plan (scope of work, budget and schedule)
- 5. establish a consensus among team members & management

Engineering Design Specification template

Cover page (title, stakeholders, and date) Introduction Simple description of design problem (Un)intended purpose(s) or use(s) of the product **Special features** Customer and Company requirements Engineering characteristics, units, limits Customer satisfaction Constraints Appendices

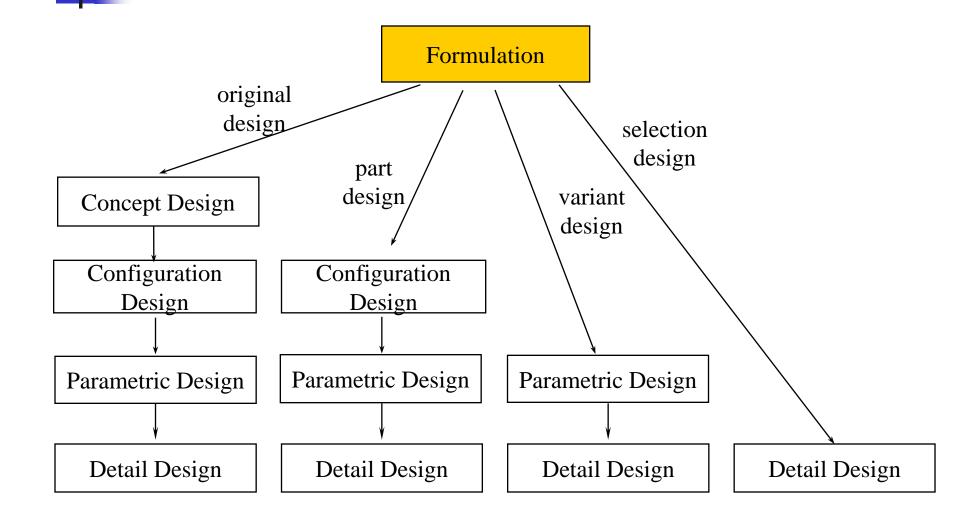
(See coffee maker example)

Formulating a design problem

1. obtain a detailed understanding of the design problem,

2. <u>document</u> our understanding in an EDS

3. choose a solution strategy


4. <u>develop a project plan</u>

5. <u>establish a consensus</u> among team members & management

- 1. list possible alternative solution strategies, for example: <u>discontinue product</u>, <u>variant design</u>, <u>original design</u>, etc
- 2. estimate the expected benefits and the costs of each alternative
- 3. assess the risk of each alternative strategy
- establish criteria to evaluate alternatives
 (e.g. benefits/costs, risk, Return on investment)
- 5. evaluate the alternatives
- 6. select the best alternative

Formulation initiates all solution strategies.

- 1. obtain a detailed understanding of the design problem,
- 2. document our understanding in an EDS
- 3. choose a solution strategy
- 4. <u>develop a project plan</u> (chapter 14)
- 5. establish a consensus among team members & management

Formulating a design problem

- 1. obtain a detailed understanding of the design problem,
- 2. <u>document</u> our understanding in an EDS
- 3. <u>choose a solution strategy</u>
- 4. develop a project plan

5. establish a consensus among team members & management

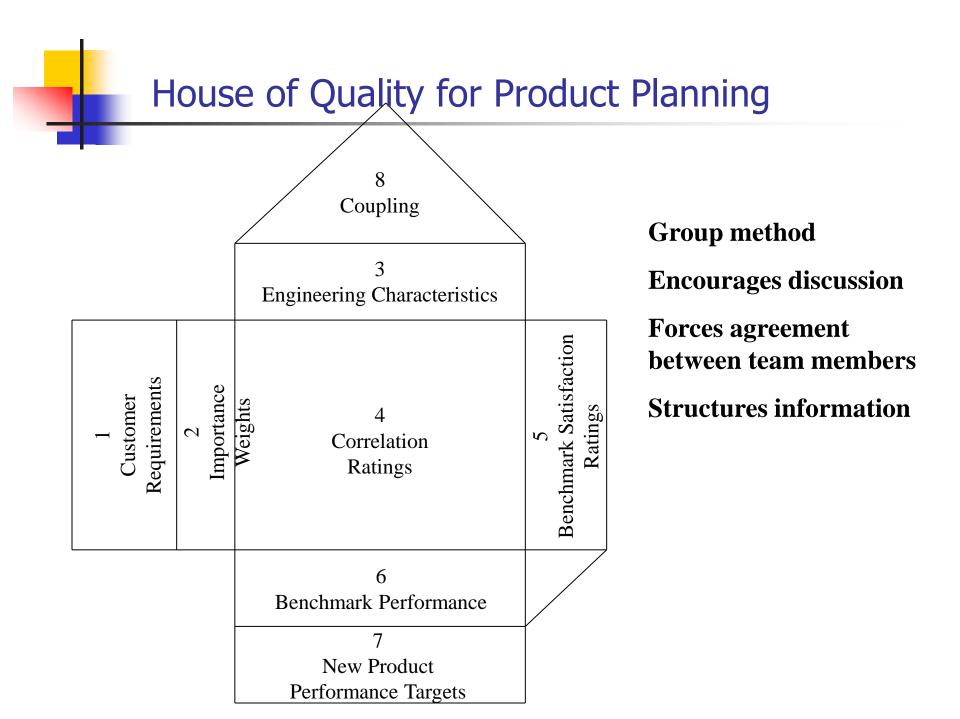
If your team members follow the previous five steps to a sound formulation, they will:

- 1. Have a common understanding of the "problem,"
- 2. Understand WHY,
- 3. Know WHAT has to be done and WHEN, and
- 4. Commit to WHO & HOW MUCH

Other (advanced) formulation methods?

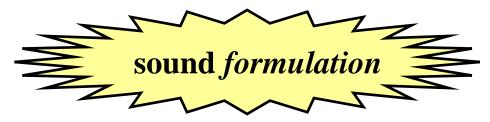
Yes, the best one being...

The <u>house of quality</u> for product planning ... part of Quality Function Deployment (QFD)


1. What is the house of quality?

2. How does it help us to formulate a design problem?

What is a quality product?


						Eng		erir			act				its)					
Example HoQ		mportance wt.	slides (yes/no)	friction factor	start switch force (lbf)	force to sharpen (lbf) hold force required (lbf)	hold force required (lbf)	grasp torque (in-lbf) shavings storeage (cu in)	(cu.in.)	no. steps to empty	120 VAC (yes/no)	cord length (ft)	point cone angle (degrees)	no. hands to operate	weight (oz)	point roughness (micro in.)	Sat n	stom isfac Ratin 0.00 - 1.00)	tio g	
Ī		Customer Requirements	7 <i>=</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	CP	Α	В
	1	doesn't slide w hen using	0.10	9	3	3	3	9	1						3	3			0.9	
	2	needs little insertion force	0.05			9	9												0.8	
		requires little insertion torque	0.05						9										0.9	
		operates when pencil is inserted				9									9				1.0	
		collects pencils shavings well	0.05							9	1								1.0	
	6	empties shavings easily	0.20							3	9		1		3	-3			0.6	
	7	plugs into w all socket easily	0.05									9							0.9	
ļ	8	cord is long enough	0.05										9					\square	0.8	
ļ	9	grinds pencil to sharp point	0.20											9			3	\square	0.7	
<u> </u>	10	needs only one hand two opera	t 0.10	<u>I</u>	3										9	3			0.8	
		Total Importance	1.00				}		{	}			{							
_							}		<u> </u>				{					}		
	Perf	ormance current produc	t(CP)															\square	\square	\angle
		competitior A: Mode	el #25	Ν	1	0	0	0	0	2	6	Υ	6	20	1	20	6		\square	
		compet																		
		New Product Tar		Ν	1	0	0	0	0	3	4	Υ	6	18	1	18	5			

- Necessary decisions and information flow during formulation
- Five steps to formulate a design problem
- Customer & company requirements
- Engineering Design Specifications
- Gaining consensus
- House of Quality for product planning
- Quality Function Deployment

Secret for a successful solution is a ...

Summary

- Products and process plants have an anatomy of components
- Components include parts & subassemblies
- Process plant components include systems and equipments
- Components can be standard or special purpose
- Component decomposition diagrams are very useful
- Types of design include: original, variant, selection, adaptive, redesign
- Tinkering is really <u>not</u> engineering design