Dimensioning and Tolerancing

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Learning Objectives

- After completing this chapter, you will
 - Explain ASME Y14.5M
 - Identify common dimensioning systems
 - Understand fundamental tenets of dimensioning
 - Apply general, specific, and delta notes
 - Apply draft angles
 - Understand symbology
 - Surface finish
 - Tolerancing

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Part I

Definitions and ASME Y14.5M

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

ASME Y14.5M

- Standard adopted by ANSI
- Published by ASME

- 345 East 47th Street, New York, NY 10017

- Entitled "Dimensioning and Tolerancing"
- ASME Y14.1M
 - Controls general dimensional tolerances
 - In titleblock
 - In general notes

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

- Size dimension
 - May be placed directly on feature
 - May be a note
 - Identify length, width, or depth of feature
- Location dimension
 - Relationship of features of an object

e.resource^{*} for Engineering Drawing and Design

Fourth Edition

- Actual size
 - Produced size
 - Measured after production
- Allowance
 - Tightest possible fit between two mating parts
 MMC(external feature)-MMC(internal feature)
- Basic dimension
 - Theoretically exact size
 - Rectangle around numerical value

Engineering Drawing and Design

Fourth Edition

- Bilateral tolerance
 - Variance in two directions from specified dimension
- Datum
 - Theoretically exact surface, plane, axis, center plane, point
 - Dimensions for related features established

e.resource[®] for Engineering Drawing and Design

Fourth Edition

- Datum feature
 - Actual feature of part
 - Used to establish a datum
- Dimension
 - Numerical value
 - Describes size, shape, location, geometry, or surface texture
- Feature
 - Any physical portion of an object

e.resource^{*} for Engineering Drawing and Design

- Geometric tolerance
 - Control form, profile, orientation, location, and runout
- Least material condition (LMC)
 - Lower limit for external feature
 - Upper limit for internal feature

Engineering Drawing and Design

Fourth Edition

- Limits of dimension
 - Largest and smallest boundaries
 - Related to tolerance of dimension
- Maximum material condition (MMC)
 - Largest limit for external feature
 - Smallest limit for internal feature

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

- Nominal size
 - General identification
 - Stock size
 - Thread diameter
- Reference dimension
 - Used for information purposes only
 - Without tolerances
 - Enclosed in parentheses

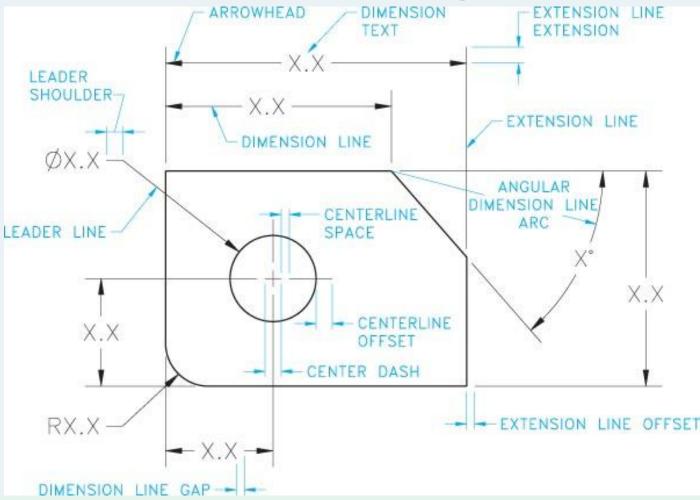
e.resource[®] for Engineering Drawing and Design

Fourth Edition

- Specified dimension
 - From which limits are calculated
- Tolerance
 - Total permissible variation in size or location
- Unilateral tolerance
 - Variation in only one direction

Engineering Drawing and Design

Fourth Edition


Notes

- Identify size with more than a numerical value
- Two types
 - General
 - Relate to entire drawing
 - Local
 - Connected to specific features

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

e.resource⁻ for Engineering Drawing and Design

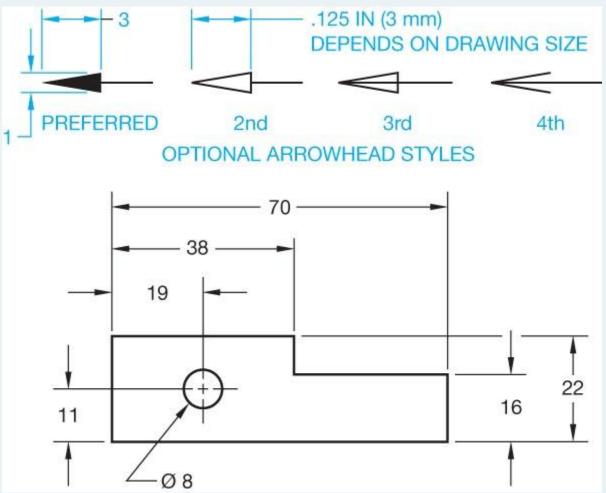
Fourth Edition

- Dimension lines
 - Indicate length of dimension
 - Thin lines capped with arrowheads
 - Broken along length to provide space for dimension value
 - Gap is commonly .06 inch
- Angular dimension line
 - Arc with center of the arc from vertex of angle

e.resource[®] for Engineering Drawing and Design

- Dimension text
 - Normally .12 inch high
 - Centered in dimension line space
- Leader line
 - Thin line
 - Connects specific note to feature
 - Any angle between 15 and 75 degrees
 - Preferably 45 degrees

e.resource^{*} for Engineering Drawing and Design


Fourth Edition

- Arrowheads
 - Cap dimension line and leader line
 - Three times as long as high
 - .125 inch long typically
- Extension lines
 - Establish extent of dimension
 - Thin lines
 - Offset .06 inch from object
 - Extend .12 inch past last dimension line

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

e.resource[®] for Engineering Drawing and Design

Fourth Edition

- Center dash
 - Part of centerline
 - Thin line
 - Drawn .12 inch
- Centerline space
 - Commonly .06 inch
 - Space between long and short dashes of centerline

e.resource[®] for Engineering Drawing and Design

Fourth Edition

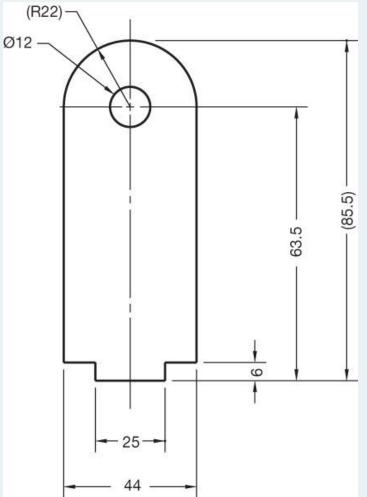
Part II

Dimensioning Systems

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Unidirectional Dimensioning


- Commonly used in mechanical drafting
- All numbers, figures, and notes read from bottom
 - Lettered horizontally on page

e.resource^{*} for Engineering Drawing and Design

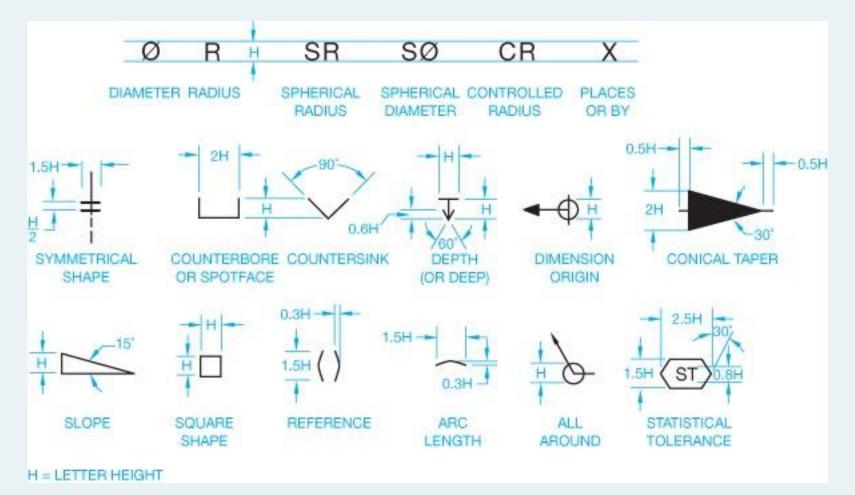
Fourth Edition

Unidirectional Dimensioning

e.resource[®] for Engineering Drawing and Design

Fourth Edition

Aligned Dimensioning


- Read from
 - Bottom
 - Horizontal dimension
 - Right
 - Vertical dimension

e.resource[®] for Engineering Drawing and Design

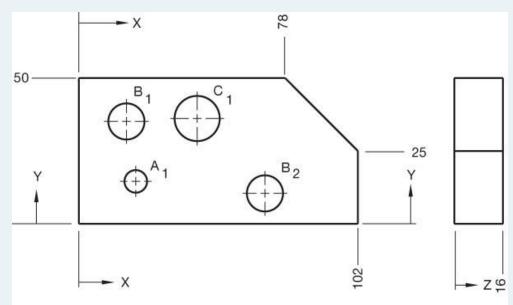
Fourth Edition

Aligned Dimensioning

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Tabular Dimensioning


- Size and location dimensions in table
 - X, Y, and Z axes defined
 - Features related to table by symbols

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

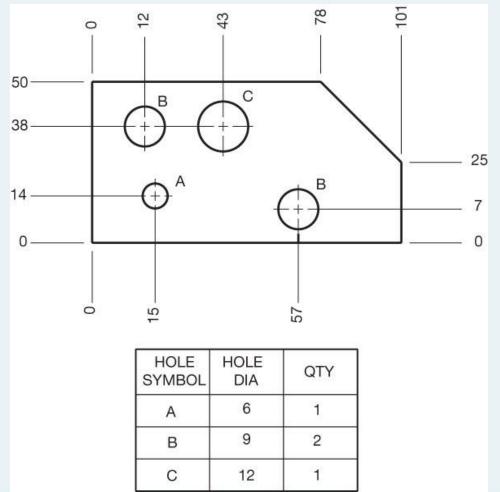
Tabular Dimensioning

HOLE SYMBOL	HOLE DIA	LOCATION		DEPTH
		х	Y	Z
A 1	6	15	14	THRU
^B 1	9	12	38	9
B ₂	9	57	7	12
C ₁	12	43	38	THRU

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Arrowless Dimensioning


- Ordinate dimensioning
- Features keyed to a table
- Location dimensions
 - Established with extension lines
 - Determined by datums

e.resource⁻ for Engineering Drawing and Design

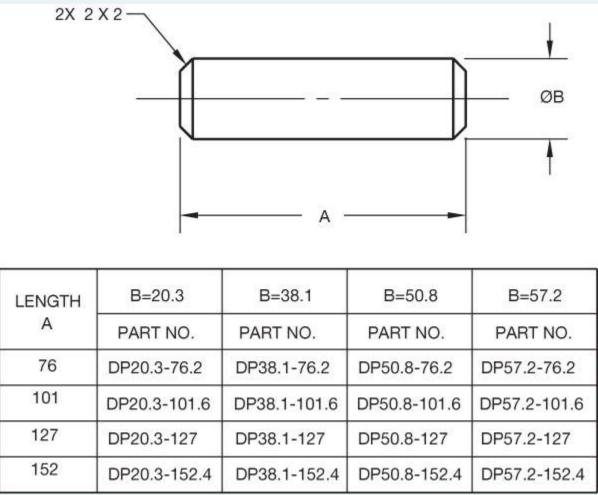
Fourth Edition

Arrowless Dimensioning

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Chart Drawings


- Used when
 - Part or assembly has one or more dimensions that change
 - Dependent on application
- Variable dimension labeled with letter
- Commonly used in vendor or specification catalogs

e.resource^{*} for Engineering Drawing and Design

Fourth Edition

Chart Drawings

e.resource[®] for Engineering Drawing and Design

Fourth Edition

Part III

Dimensioning Rules

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Decimal Points

- Leading zeros
 - Only for metric values less than one
 - E.g., 0.08 mm
- Specified dimension

- Same number of decimal places as tolerance

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Fractions

 Separate whole numbers from fractions with dash

- E.g. 1-5/8, not 1 5/8

Use stacked fractions whenever possible

e.resource^{*} for Engineering Drawing and Design

Fourth Edition

Chain Dimensioning

- Point-to-point dimensioning
 - Dependent on previous dimension(s)
 - Avoid tolerance buildup
- Overall dimension
 - Critical
 - Stands independent in relationship to other dimensions
- Let one dimension "float"

e.resource[®] for Engineering Drawing and Design

Preferred Dimensioning

- Avoid crossing extension lines
 - With other extension lines
 - Do not break when they cross
 - With dimension lines
 - Over arrowheads
 - Break when they cross
- Avoid dimensioning over or through an object

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Preferred Dimensioning

- Avoid
 - Dimensioning to hidden features
 - Unnecessarily long extension lines
 - Using object lines as extension lines
- Dimension between views when possible
- Group adjacent dimensions
- Dimension to view that provide best shape description

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

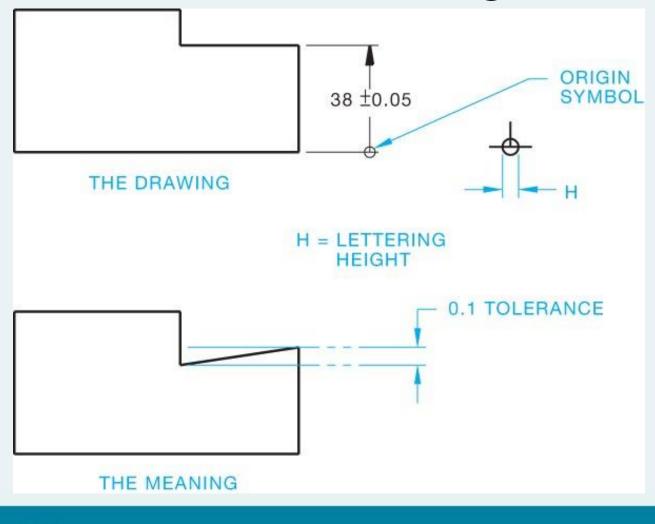
Preferred Dimensioning

- Dimension multiple features of the same size with a note
 - Specifies the number of "like" features
- Point leader arrow to center of circle
- Dimension circles with diameters
- Dimension arcs and fillets with radii

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Location Dimensions


- Rectangular shapes
 - Located to sides
- Symmetrical features
 - Located to centerline or centerplane
- Cylindrical features
 - Given to center of feature
 - Dimension in view where they appear as circles

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Dimension Origin

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

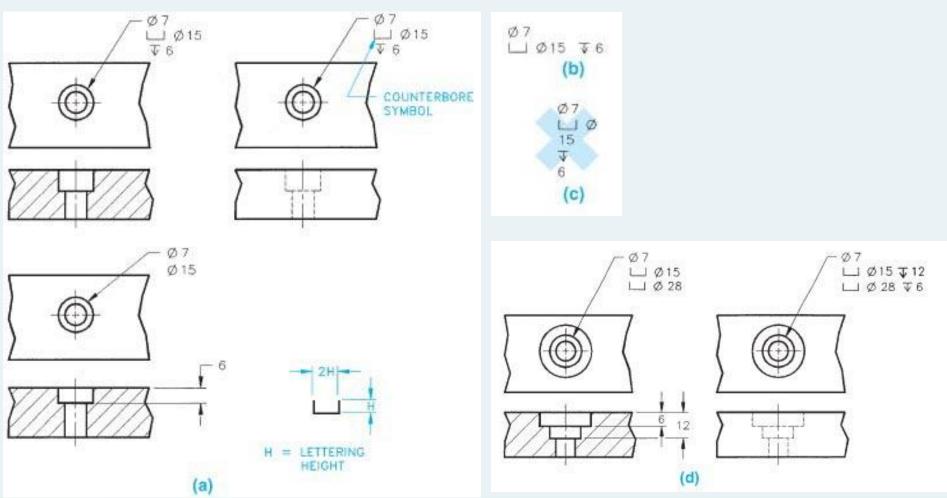
Part IV

Notes and Symbols

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Counterbore


- Machine a diameter below part surface
 - Bolt head may be recessed
- Symbol
 - Same as for spotface

e.resource^{*} for Engineering Drawing and Design

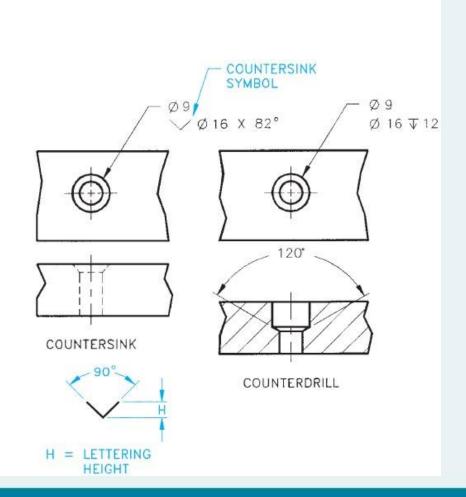
Fourth Edition

Counterbore

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Countersink


- Counterdrill
- Recess head of fastener below part surface

e.resource[®] for Engineering Drawing and Design

Fourth Edition

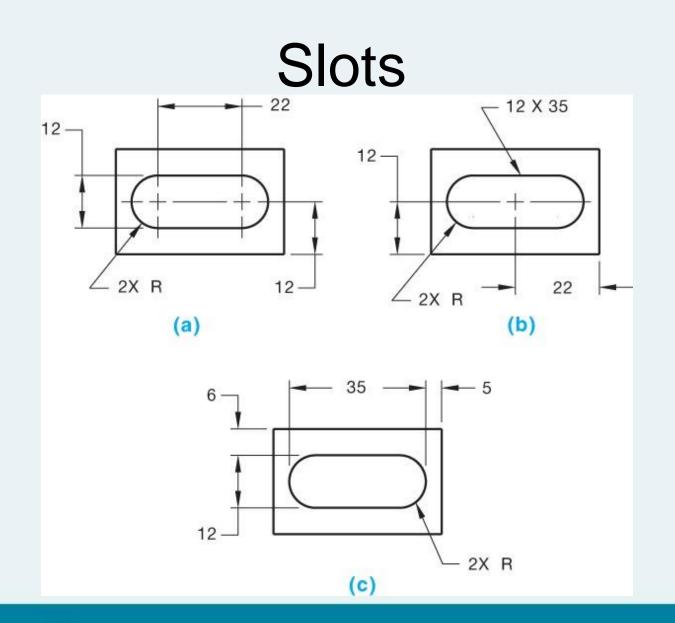
Countersink

e.resource^{*} for Engineering Drawing and Design

Fourth Edition

Slots

Full radius


- Dimension one of three ways

- End radius > feature width
 - Dimension end radii
 - Dimension feature width
 - Dimension feature length

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Surface Finishes

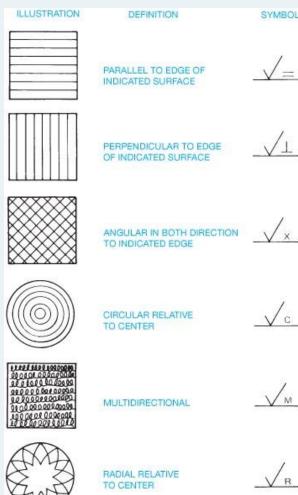
- When object surfaces are machined to certain specification
- May appear in a general note
- May be connected to specific surface with leader
- FAO
 - Finish all over

e.resource[®] for Engineering Drawing and Design

Fourth Edition

Surface Finishes

SYMBOL


 $\sqrt{\perp}$

V×

/ c

VM

R

e.resource" for Engineering Drawing and Design

Fourth Edition

THOMSON DELMAR LEARNING

Surface Finishes

R	OUGHNESS HEIGHT RATING MICRO INCHES	SURFACE	PROCESS
25 12.5 6.3 3.2 1.6	1000	VERY ROUGH	SAW AND TORCH CUTTING, FORGING, OR SAND CASTING.
	500	ROUGH MACHINING	HEAVY CUTS AND COARSE FEEDS IN TURNING, MILLING, AND BORING
	250	COARSE	VERY COARSE SURFACE GRIND, RAPID FEEDS IN TURNING, PLANING, MILLING, BORING, AND FILING.
	125	MEDIUM	MACHINING OPERATIONS WITH SHARP TOOLS, HIGH SPEEDS, FINE FEEDS, AND LIGHT CUTS.
	63	GOOD MACHINE FINISH	SHARP TOOLS, HIGH SPEEDS, EXTRA-FINE FEEDS AND CUTS.
0.80	52 T	HIGH-GRADE MACHINE FINISH	EXTREMELY FINE FEEDS AND CUTS ON LATHE, MILL, AND SHAPERS REQUIRED, EASILY PRODUCED BY CENTERLESS, CYLINDRICAL, AND SURFACE GRINDING.
0.40	16		
0.20	В	VERY FINE MACHINE FINISH	FINE HONING AND LAPPING OF SURFACE.
0.050	2-4	EXTREMELY SMOOTH MACHINE FINISH	EXTRA-FINE HONING AND LAPPING OF SURFACE, MIRROR FINISH.
0.025	\checkmark	SUPER FINISH	DIAMOND ABRASIVES.

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

General Notes

- Material specifications
- Dimensions
- General tolerances
- Confidential note, copyrights, patents
- Drawn by
- Scale
- Date
- Part name

e.resource[®] for Engineering Drawing and Design

Fourth Edition

General Notes

- Drawing size
- Part number
- Number of revisions
- Type of projection (first or third)
- Standard reference (e.g., ANSI/ASME)
- General machining, finish, or paint specifications
- Identification of "like" features

e.resource[®] for Engineering Drawing and Design

Fourth Edition

Delta Notes

- Triangle placed on a drawing
 - Commonly, next to a dimension
 - Hexagons and circles also used
- Cross-references a general note by number
- E.g, 2.625
 - This dimension should refer to general note #1

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Part V

Tolerancing

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Calculating Tolerances

- For example
 - -22.0 ± 0.1
 - Upper limit

- 22.1

- Lower limit
 - 21.9
- Tolerance

- 0.2

e.resource^{*} for Engineering Drawing and Design

Fourth Edition

Fit Tables - ANSI

- RC
 - Running clearance
- LC
 - Locational clearance
- LT
 - Transitional clearance
- LN
 - Locational interference
- FN
 - Force fit

e.resource[®] for Engineering Drawing and Design

Fourth Edition

Fit Tables - ISO

- Hole basis
 - Clearance Fit
 - H11/c11
 - H9/d9
 - H8/f7
 - H7/g6
 - H7/h6

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Fit Tables - ISO

- Hole basis
 - Transition fit
 - H7/k6
 - H7/n6
 - Interference fit
 - H7/p6
 - H7/s6
 - H7/u6

e.resource⁻ for Engineering Drawing and Design

Fourth Edition

Summary

- Use conventional dimensioning practices
 - Continuity
 - Accuracy
 - Ease of interpretation
- Specify tolerances that are appropriate for part application and machining ability

e.resource⁻ for Engineering Drawing and Design

Fourth Edition